A1. Airway Management

Managing Risk in Airway Management Procedures

Ellen S Deutsch, MD, MS, FACS, FAAP
SUN Meeting, December, 2014
Disclosures

• No financial support received for this presentation
• Employment:
 • ECRI Institute (non-profit)
 • the Children’s Hospital of Philadelphia
• Depiction of specific devices does not necessarily imply endorsement
After completing this session, the learner should be able to:

• Describe airway management learning objectives for YOUR OWN learners

• Pair airway management devices with airway training models/manikins which are appropriate for your own learners

• Describe the contributions of the individual, the team and the system in mitigating the risks of airway management procedures
Risk is present in many components of airway management

- **Risk**: a calculation, based on both technical and non-technical factors
- **Hazard**: a system state or set of conditions that, together with a particular set of worst-case environment conditions, will lead to an accident (loss)

- **What can go wrong?**
 - Anything that can go wrong might go wrong

Based on: Leveson. Engineering a Safer World, Systems Thinking Applied to Safety; 2011
There’s rules to riding a horse
But the horse won’t necessarily know ‘em

Texas Bix Bender
What can we optimize to provide the best care for our patients?

Environmental / system conditions
- Equipment, protocols
- Simulation to evaluate, iteratively improve, practice

Individual Care Provider skills
- Technical
 - Techniques for various procedures
- Non-technical
 - Situational awareness
 - Knowing when to ask for help

Team skills
- Technical
 - Coordinating resources and actions
- Non-technical
 - Shared mental model
What are the risks in airway management?

- Preconditions, requirements, resources
- Outcomes, results
Needs Assessment

• Determine who your learners are
• Assess their educational needs
 • Learners’ perceptions
 • Learner testing
 • Faculty’s perceptions
 • Academic, credentialing, regulatory, institutional requirements
 • Needs analysis, gap analysis
Develop your Learning Objectives

Action
- Perform
- Intubate

Subject
- a cricothyrotomy
- 3 different “age” manikins

Measure
- [completes one] within 3 minutes
Example of handout including learning objectives

• Objectives:
 • Position patient to optimize airway patency
 • Insert nasopharyngeal or oropharyngeal airway
 • Mask ventilate using one-handed and two-handed techniques to hold the mask

• Introduction
• Equipment and Supplies
• Procedure
• Pearls
• Pitfalls

Deutsch, Malekzadeh, Malloy
Simulation-Based Otorhinolaryngology Emergencies
Boot Camp: How I Do It (Parts 1, 2, 3) 2014
Includes handouts for each station in the online appendices
Individual skills
Laryngeal Anatomy: Pediatric vs Adult

- Proportions
 - Prioritization of breathing versus voice
- Location
 - More cephalad; protected by mandible

The Pediatric Airway
An Interdisciplinary Approach; Myer, Cotton, Shott
Nasopharyngeal Airway

- Select proper size
 - Tip of nose to earlobe
- Lubricate
- Insert gently
 - Bevel toward septum
- Do not force
- Ensure correct placement
 - Separates soft palate from posterior pharyngeal wall
 - Above (cephalad) epiglottis
- Option: Seldinger technique
- Contraindication
 - Midface/head trauma, skull fracture

K Roberts, H Whalley, A Bleetman/ The nasopharyngeal airway: dispelling myths and establishing the facts. 2005
Oropharyngeal Airway

- Unresponsive patient
- Select proper size
 - Oral commissure to earlobe
- Open patient’s mouth
 - Grasp jaw/tongue or
 - Use tongue depressor
- Insert OPA
 - Initially turned 180° (adult) or 90° (child); then rotate into position
- Ensure correct placement
- Remove if patient gags
- Contraindication: recent oral surgery or trauma
Bag-Mask Ventilation

• Contraindications are rare
 • Severe facial trauma, open eye injuries
 • Foreign material in oral cavity
• Interaction between positioning of both provider and patient
 • Head extension, jaw thrust
 • Ensure mask seals against patient’s face
 • Bring patient’s face up into the mask
• Can often temporize
• Bag Mask Ventilation – Positive Pressure Ventilation video by NEJM

video: Bag Mask Ventilation NEJM
Eppich et al Residents’ Mental Model of Bag-Mask Ventilation
Laryngeal Mask Airway

• Alternative to ETT in some circumstances
 • Relatively easy and quick to place
 • May be appropriate if anatomic or traumatic abnormalities make intubation difficult
• Select correct size
 • Weight range typically printed on the LMA
• Deflate and lubricate the cuff
• Slide LMA into place by following the curve of the palate (with firm pressure) until gentle resistance is felt
• Inflate cuff; confirm adequate ventilation, secure the LMA
• Will not protect against aspiration
• Videos: Laryngeal Mask Airway EM Cape Town; Laryngeal Mask Airway NEJM
Endotracheal Intubation

• Keys:
 • Proper positioning

Chevalier Jackson c1936
Endotracheal Tube

• Keys:
 • Proper positioning
 • Good laryngeal visualization

Chevalier Jackson c1936
Augmentative Devices

- Videolaryngoscope
- Fiberoptic laryngoscope
Trach
Emergency airway assessment: Function

Unconscious, unreactive, near death?

- yes: Crash airway: immediate control required
 - fails
 - yes: Difficult airway: some predictability; may evolve
 - fails
 - yes: Failed airway: “can’t intubate, can’t ventilate”
 - no: RSI
 - fails
- no: Difficult airway?
 - yes: Difficult airway: some predictability; may evolve
 - fails
 - yes: Failed airway: “can’t intubate, can’t ventilate”
 - no: RSI
 - fails

Adapted from Ron Walls et al; The Emergency Airway Algorithms in Manual of Emergency Airway Management; 2000
Anatomic predictors: LEMON Law

• Look externally
 • Obesity?
 • Cranio-facial anomaly?
 • Small mandible
 • Facial asymmetry
 • Trisomy 21
 • Midface hypoplasia
 • Tracheotomy?

Anatomic predictors: LEMON Law

- Evaluate by the 3-3-2 rule
 - 3 fingers into the mouth
 - 3 fingers under the chin
 - 2 fingers at the top of the neck

Photo by Pete Pellegrino, MD
http://newborns.stanford.edu/PhotoGallery/Micrognathia1.html
Anatomic predictors: LEMON Law

- Mallampati evaluation
 - Class I and II: no difficulty
 - Class III: moderate difficulty
 - Class IV: severe difficulty

Source: www.sedationfacts.org accessed 12/5/09
Anatomic predictors: LEMON Law

- Obstruction
 - Foreign body
 - Infection
 - Tumor / neoplasm
 - Other masses
Anatomic predictors: **LEMON** Law

- **Obstruction where?**
 - Nose, including choanae, nasopharynx (adenoids)
 - Oral cavity, oropharynx, including tongue, tonsils
 - External or extraluminal compression
 - Peri-tonsillar abscess, esophageal foreign body
Anatomic predictors: LEMONN Law

- Neck mobility
 - Immobility
 - Instability

Image courtesy of Vinay Nadkarni, MD

http://www.chop.edu/centers-programs/trisomy-21-program#.VIAcS90zIU
accessed 12/4/14
Don’t forget...

Image courtesy of Dr. David Molter
Debriefing is essential!
Know your own simulation resources and capabilities

<table>
<thead>
<tr>
<th></th>
<th>NP Airway</th>
<th>Bag-Valve Mask</th>
<th>Laryngeal Mask Airway</th>
<th>Intubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant</td>
<td>Yes</td>
<td>Yes</td>
<td>Unique #1</td>
<td>3.0</td>
</tr>
<tr>
<td>Child</td>
<td>Yes</td>
<td>Yes</td>
<td>Will not work</td>
<td>4.5</td>
</tr>
<tr>
<td>Adult</td>
<td>Yes, including Seldinger</td>
<td>Very difficult</td>
<td>Cookgas #3.5</td>
<td>7.5</td>
</tr>
</tbody>
</table>
Comparison of learning modalities

<table>
<thead>
<tr>
<th></th>
<th>Lecture</th>
<th>Animal Lab</th>
<th>Manikin</th>
<th>Virtual Bronch</th>
<th>Standardized Patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychomotor</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affective</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal/Abnormal</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Endoscopy</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Team</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Overall realism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Manual realism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

Resident perception, Likert scale, ANOVA significant difference in mean performance scores

Deutsch, Christenson, Curry, Hossain, Zur, Jacobs; Multimodality Education for Airway Endoscopy Skill Development; Annals ORL 2009
Team skills
Environmental / System factors

Critical airway team carts

Kaalan Johnson et al Simulation to Implement a Novel System to Care for Pediatric Critical Airway Obstruction 2012
What can we optimize to provide the best care for our patients?

Environmental / system conditions
- Equipment, protocols
- Simulation to evaluate, iteratively improve, practice

Team skills
- Technical
 - Coordinating resources and actions
- Non-technical
 - Shared mental model

Individual Care Provider skills
- Technical
 - Techniques for various procedures
- Non-technical
 - Situational awareness
 - Knowing when to ask for help